MisterFixx revised this gist . Go to revision
1 file changed, 216 insertions
gpt-oss:120b.md(file created)
| @@ -0,0 +1,216 @@ | |||
| 1 | + | Below is a **single HTML file** that creates a self‑contained triple‑pendulum animation. | |
| 2 | + | The physics are handled with a simple Verlet integrator plus distance‑constraints, which gives a realistic motion that obeys gravity. | |
| 3 | + | Each mass leaves a fading trail, so you can see the path it follows. | |
| 4 | + | ||
| 5 | + | ```html | |
| 6 | + | <!DOCTYPE html> | |
| 7 | + | <html lang="en"> | |
| 8 | + | <head> | |
| 9 | + | <meta charset="UTF-8"> | |
| 10 | + | <title>Triple Pendulum</title> | |
| 11 | + | <style> | |
| 12 | + | body {margin:0; background:#111; overflow:hidden;} | |
| 13 | + | canvas {display:block;} | |
| 14 | + | </style> | |
| 15 | + | </head> | |
| 16 | + | <body> | |
| 17 | + | <canvas id="c"></canvas> | |
| 18 | + | ||
| 19 | + | <script> | |
| 20 | + | // ------------------------------------------------------------ | |
| 21 | + | // 1️⃣ Setup | |
| 22 | + | // ------------------------------------------------------------ | |
| 23 | + | const canvas = document.getElementById('c'); | |
| 24 | + | const ctx = canvas.getContext('2d'); | |
| 25 | + | function resize() { | |
| 26 | + | canvas.width = innerWidth; | |
| 27 | + | canvas.height = innerHeight; | |
| 28 | + | } | |
| 29 | + | window.addEventListener('resize', resize); | |
| 30 | + | resize(); | |
| 31 | + | ||
| 32 | + | // ------------------------------------------------------------ | |
| 33 | + | // 2️⃣ Pendulum parameters | |
| 34 | + | // ------------------------------------------------------------ | |
| 35 | + | const g = 980; // gravity (px/s²) – scaled for screen size | |
| 36 | + | const dt = 0.016; // time step (seconds) | |
| 37 | + | const substeps = 5; // for stability | |
| 38 | + | ||
| 39 | + | // rod lengths (in pixels) | |
| 40 | + | const L1 = 180, L2 = 130, L3 = 100; | |
| 41 | + | ||
| 42 | + | // masses (only needed for visual size) | |
| 43 | + | const R1 = 12, R2 = 10, R3 = 8; | |
| 44 | + | ||
| 45 | + | // pivot point (fixed) | |
| 46 | + | const pivot = {x: canvas.width/2, y: canvas.height/4}; | |
| 47 | + | ||
| 48 | + | // ----------------------------------------------------------------- | |
| 49 | + | // 3️⃣ Verlet state (position + previous position) for each bob | |
| 50 | + | // ----------------------------------------------------------------- | |
| 51 | + | function Vec(x,y){ return {x, y}; } | |
| 52 | + | ||
| 53 | + | let bob = [ | |
| 54 | + | { // bob 0 – attached to pivot (doesn't move, but keep for simplicity) | |
| 55 | + | pos: Vec(pivot.x, pivot.y), | |
| 56 | + | prev: Vec(pivot.x, pivot.y) | |
| 57 | + | }, | |
| 58 | + | { // bob 1 | |
| 59 | + | pos: Vec(pivot.x + L1*Math.sin(Math.PI/2), pivot.y + L1*Math.cos(Math.PI/2)), | |
| 60 | + | prev: Vec(pivot.x + L1*Math.sin(Math.PI/2), pivot.y + L1*Math.cos(Math.PI/2)) | |
| 61 | + | }, | |
| 62 | + | { // bob 2 | |
| 63 | + | pos: Vec(pivot.x + L1*Math.sin(Math.PI/2) + L2*Math.sin(Math.PI/2), | |
| 64 | + | pivot.y + L1*Math.cos(Math.PI/2) + L2*Math.cos(Math.PI/2)), | |
| 65 | + | prev: Vec(pivot.x + L1*Math.sin(Math.PI/2) + L2*Math.sin(Math.PI/2), | |
| 66 | + | pivot.y + L1*Math.cos(Math.PI/2) + L2*Math.cos(Math.PI/2)) | |
| 67 | + | }, | |
| 68 | + | { // bob 3 – end of the chain | |
| 69 | + | pos: Vec(pivot.x + L1*Math.sin(Math.PI/2) + L2*Math.sin(Math.PI/2) + L3*Math.sin(Math.PI/2), | |
| 70 | + | pivot.y + L1*Math.cos(Math.PI/2) + L2*Math.cos(Math.PI/2) + L3*Math.cos(Math.PI/2)), | |
| 71 | + | prev: Vec(pivot.x + L1*Math.sin(Math.PI/2) + L2*Math.sin(Math.PI/2) + L3*Math.sin(Math.PI/2), | |
| 72 | + | pivot.y + L1*Math.cos(Math.PI/2) + L2*Math.cos(Math.PI/2) + L3*Math.cos(Math.PI/2)) | |
| 73 | + | } | |
| 74 | + | ]; | |
| 75 | + | ||
| 76 | + | // ----------------------------------------------------------------- | |
| 77 | + | // 4️⃣ Trail storage (capped length) | |
| 78 | + | // ----------------------------------------------------------------- | |
| 79 | + | const maxTrail = 300; // how many points to keep | |
| 80 | + | let trails = [ [], [], [] ]; // one per moving bob (1,2,3) | |
| 81 | + | ||
| 82 | + | // ----------------------------------------------------------------- | |
| 83 | + | // 5️⃣ Physics helpers | |
| 84 | + | // ----------------------------------------------------------------- | |
| 85 | + | function verletIntegrate(b, dt) { | |
| 86 | + | const ax = 0, ay = g; // gravity only | |
| 87 | + | const nx = b.pos.x + (b.pos.x - b.prev.x) + ax*dt*dt; | |
| 88 | + | const ny = b.pos.y + (b.pos.y - b.prev.y) + ay*dt*dt; | |
| 89 | + | b.prev.x = b.pos.x; | |
| 90 | + | b.prev.y = b.pos.y; | |
| 91 | + | b.pos.x = nx; | |
| 92 | + | b.pos.y = ny; | |
| 93 | + | } | |
| 94 | + | ||
| 95 | + | // enforce distance constraints (rigid rods) | |
| 96 | + | function satisfyConstraints() { | |
| 97 | + | // we iterate a few times for convergence | |
| 98 | + | for (let i = 0; i < 5; i++) { | |
| 99 | + | // 0 <-> 1 (pivot is fixed, so we only move bob1) | |
| 100 | + | let a = bob[0], b = bob[1]; | |
| 101 | + | let dx = b.pos.x - a.pos.x, dy = b.pos.y - a.pos.y; | |
| 102 | + | let d = Math.hypot(dx, dy); | |
| 103 | + | let diff = (d - L1) / d; | |
| 104 | + | b.pos.x -= dx * diff; | |
| 105 | + | b.pos.y -= dy * diff; | |
| 106 | + | ||
| 107 | + | // 1 <-> 2 | |
| 108 | + | a = bob[1]; b = bob[2]; | |
| 109 | + | dx = b.pos.x - a.pos.x; dy = b.pos.y - a.pos.y; | |
| 110 | + | d = Math.hypot(dx, dy); | |
| 111 | + | diff = (d - L2) / d; | |
| 112 | + | // move both ends equally | |
| 113 | + | a.pos.x += dx * diff * 0.5; | |
| 114 | + | a.pos.y += dy * diff * 0.5; | |
| 115 | + | b.pos.x -= dx * diff * 0.5; | |
| 116 | + | b.pos.y -= dy * diff * 0.5; | |
| 117 | + | ||
| 118 | + | // 2 <-> 3 | |
| 119 | + | a = bob[2]; b = bob[3]; | |
| 120 | + | dx = b.pos.x - a.pos.x; dy = b.pos.y - a.pos.y; | |
| 121 | + | d = Math.hypot(dx, dy); | |
| 122 | + | diff = (d - L3) / d; | |
| 123 | + | a.pos.x += dx * diff * 0.5; | |
| 124 | + | a.pos.y += dy * diff * 0.5; | |
| 125 | + | b.pos.x -= dx * diff * 0.5; | |
| 126 | + | b.pos.y -= dy * diff * 0.5; | |
| 127 | + | } | |
| 128 | + | } | |
| 129 | + | ||
| 130 | + | // ----------------------------------------------------------------- | |
| 131 | + | // 6️⃣ Main loop | |
| 132 | + | // ----------------------------------------------------------------- | |
| 133 | + | function step() { | |
| 134 | + | // sub‑step integration for stability | |
| 135 | + | const subDt = dt / substeps; | |
| 136 | + | for (let s = 0; s < substeps; s++) { | |
| 137 | + | // integrate bobs 1‑3 (bob0 is the fixed pivot) | |
| 138 | + | for (let i = 1; i < bob.length; i++) verletIntegrate(bob[i], subDt); | |
| 139 | + | satisfyConstraints(); | |
| 140 | + | } | |
| 141 | + | ||
| 142 | + | // store trail points | |
| 143 | + | for (let i = 1; i < bob.length; i++) { | |
| 144 | + | const tr = trails[i-1]; | |
| 145 | + | tr.push({x: bob[i].pos.x, y: bob[i].pos.y}); | |
| 146 | + | if (tr.length > maxTrail) tr.shift(); | |
| 147 | + | } | |
| 148 | + | } | |
| 149 | + | ||
| 150 | + | // ----------------------------------------------------------------- | |
| 151 | + | // 7️⃣ Rendering | |
| 152 | + | // ----------------------------------------------------------------- | |
| 153 | + | function draw() { | |
| 154 | + | ctx.clearRect(0,0,canvas.width,canvas.height); | |
| 155 | + | ||
| 156 | + | // draw trails (fading) | |
| 157 | + | for (let i = 0; i < trails.length; i++) { | |
| 158 | + | const tr = trails[i]; | |
| 159 | + | if (tr.length < 2) continue; | |
| 160 | + | ctx.beginPath(); | |
| 161 | + | for (let j = 0; j < tr.length; j++) { | |
| 162 | + | const p = tr[j]; | |
| 163 | + | const alpha = j / tr.length; // older points are more transparent | |
| 164 | + | ctx.strokeStyle = `rgba(${255-30*i},${150+30*i},${200},${alpha})`; | |
| 165 | + | if (j===0) ctx.moveTo(p.x,p.y); | |
| 166 | + | else ctx.lineTo(p.x,p.y); | |
| 167 | + | } | |
| 168 | + | ctx.lineWidth = 2; | |
| 169 | + | ctx.stroke(); | |
| 170 | + | } | |
| 171 | + | ||
| 172 | + | // draw rods | |
| 173 | + | ctx.strokeStyle = '#fff'; | |
| 174 | + | ctx.lineWidth = 2; | |
| 175 | + | ctx.beginPath(); | |
| 176 | + | ctx.moveTo(pivot.x, pivot.y); | |
| 177 | + | ctx.lineTo(bob[1].pos.x, bob[1].pos.y); | |
| 178 | + | ctx.lineTo(bob[2].pos.x, bob[2].pos.y); | |
| 179 | + | ctx.lineTo(bob[3].pos.x, bob[3].pos.y); | |
| 180 | + | ctx.stroke(); | |
| 181 | + | ||
| 182 | + | // draw bobs | |
| 183 | + | const radii = [0, R1, R2, R3]; | |
| 184 | + | const colors = ['#ff6', '#6cf', '#f66']; | |
| 185 | + | for (let i = 1; i < bob.length; i++) { | |
| 186 | + | ctx.beginPath(); | |
| 187 | + | ctx.arc(bob[i].pos.x, bob[i].pos.y, radii[i], 0, Math.PI*2); | |
| 188 | + | ctx.fillStyle = colors[i-1]; | |
| 189 | + | ctx.fill(); | |
| 190 | + | ctx.strokeStyle = '#fff'; | |
| 191 | + | ctx.stroke(); | |
| 192 | + | } | |
| 193 | + | } | |
| 194 | + | ||
| 195 | + | // ----------------------------------------------------------------- | |
| 196 | + | // 8️⃣ Animation loop | |
| 197 | + | // ----------------------------------------------------------------- | |
| 198 | + | function animate() { | |
| 199 | + | step(); | |
| 200 | + | draw(); | |
| 201 | + | requestAnimationFrame(animate); | |
| 202 | + | } | |
| 203 | + | animate(); | |
| 204 | + | ||
| 205 | + | </script> | |
| 206 | + | </body> | |
| 207 | + | </html> | |
| 208 | + | ``` | |
| 209 | + | ||
| 210 | + | ### How it works | |
| 211 | + | 1. **Verlet integration** – each bob’s new position is computed from its current and previous positions plus gravity. | |
| 212 | + | 2. **Distance constraints** – after integration the three rod lengths (`L1`, `L2`, `L3`) are enforced by repeatedly adjusting the positions, giving a realistic rigid‑rod behavior. | |
| 213 | + | 3. **Trails** – every frame the current positions of the three moving bobs are pushed onto three separate arrays. Old points are discarded after `maxTrail` frames, and the trail is drawn with a fading alpha so the path slowly disappears. | |
| 214 | + | 4. **Rendering** – the canvas is cleared each frame, trails are drawn first (so they appear beneath the pendulum), then the rods and the three bobs are drawn. | |
| 215 | + | ||
| 216 | + | Open the file in any modern browser and you’ll see a continuously moving triple pendulum, each bob leaving a colorful fading trail behind it. No controls or user interaction are required. Enjoy! | |
Newer
Older